问题
解答题
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=
(I)求an与bn; (II)设Tn=anb1+an-1b2+…+a1bn,n∈N+,求Tn的值. |
答案
解(Ⅰ)设等差数列{an}的公差为d,∵差数列{an}的前n项和为Sn,数列{bn}为等比数列,
且b2+S2=12,q=
,S2 b2
∴
,即b1q+a1+a2=12 q= a1+a2 1•q
,解得:q+6+d=12① 6+d=q2 ②
.d=3 q=3
∴an=a1+(n-1)d=3+(n-1)•3=3n,
bn=b1qn-1=1×3n-1=3n-1.
(Ⅱ)Tn=anb1+an-1b2+an-2b3+…+a1bn
=3n•1+3(n-1)•3+3(n-2)•32+…+3×2×3n-2+3•3n-1
=n•3+(n-1)•32+(n-2)•33+…+2•3n-1+3n.
∴3Tn=n•32+(n-1)•33+…+2•3n+3n+1.
∴3Tn-Tn=-3n+32+33+…+3n+3n+1
=(32+33+…+3n+1)-3n
=
-3n=9×(1-3n) 1-3
-3n-3n+2 2
.9 2
∴Tn=
-n-3n-1 2
.3 2