问题 解答题
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=
S2
b2

(I)求an与bn
(II)设Tn=anb1+an-1b2+…+a1bn,n∈N+,求Tn的值.
答案

解(Ⅰ)设等差数列{an}的公差为d,∵差数列{an}的前n项和为Sn,数列{bn}为等比数列,

b2+S2=12,q=

S2
b2

b1q+a1+a2=12
q=
a1+a2
1•q
,即
q+6+d=12①
6+d=q2    ②
,解得:
d=3
q=3

∴an=a1+(n-1)d=3+(n-1)•3=3n,

bn=b1qn-1=1×3n-1=3n-1

(Ⅱ)Tn=anb1+an-1b2+an-2b3+…+a1bn

=3n•1+3(n-1)•3+3(n-2)•32+…+3×2×3n-2+3•3n-1

=n•3+(n-1)•32+(n-2)•33+…+2•3n-1+3n

3Tn=n•32+(n-1)•33+…+2•3n+3n+1

3Tn-Tn=-3n+32+33+…+3n+3n+1

=(32+33+…+3n+1)-3n

=

9×(1-3n)
1-3
-3n=
3n+2
2
-3n-
9
2

Tn=

3n-1
2
-n-
3
2

单项选择题
填空题