问题
解答题
等差数列{an}前n项和为Sn,已知对任意的n∈N*,点(n,Sn)在二次函数f(x)=x2+c图象上. (1)求c,an; (2)若kn=
|
答案
(1)点(n,Sn)在二次函数f(x)=x2+c的图象上,
∴Sn=n2+c,
a1=S1=1+c,
a2=S2-S1=(4+c)-(1+c)=3,
a3=S3-S2=5,
又∵an是等差数列,
∴6+c=6,c=0,
d=3-1=2,an=1+2(n-1)=2n-1.
(2)∵an=2n-1,kn=
,an 2n
∴kn=
,2n-1 2n
∴Tn=
+1 2
+3 22
+…+5 23
+2n-3 2n-1
,…①2n-1 2n
Tn=1 2
+1 22
+3 23
+…+5 24
+2n-3 2n
,…②2n-1 2n+1
①-②,得
Tn=1 2
+2(1 2
+1 22
+1 23
+…+1 23
)-1 2n 2n-1 2n+1
=
+2×1 2
-
[1-(1 22
)n-1]1 2 1- 1 2 2n-1 2n+1
=
-3 2
.2n+3 2n+1
∴Tn=3-
.2n+3 2n