问题 解答题
已知f(x)=a1x+a2x2+a3x3+…+anxn,且a1,a2,a3,…,an组成等差数列(n为正偶数),又f(1)=n2,f(-1)=n;
(1)求数列{an}的通项an
(2)求f(
1
2
)的值;
(3)比较f(
1
2
)的值与3的大小,并说明理由.
答案

(1)设数列的公差为d,

因为f(1)=a1+a2+a3+…+an=n2,则na1+

n(n-1)
2
d=n2,即2a1+(n-1)d=2n.

又f(-1)=-a1+a2-a3+…-an-1+an=n,即

n
2
×d=n,d=2.

解得a1=1.

∴an=1+2(n-1)=2n-1.

(2)f(

1
2
)=(
1
2
)+3(
1
2
2+5(
1
2
3+…+(2n-1)(
1
2
n,①

两边都乘以

1
2
,可得
1
2
f(
1
2
)=(
1
2
2+3(
1
2
3+5(
1
2
4+…+(2n-1)(
1
2
n+1,②

①-②,得

1
2
f(
1
2
)=
1
2
+2(
1
2
2+2(
1
2
3+…+2(
1
2
n-(2n-1)(
1
2
n+1

1
2
f(
1
2
)=
1
2
+
1
2
+(
1
2
2+…+(
1
2
n-1-(2n-1)(
1
2
n+1

∴f(

1
2
)=1+1+
1
2
+
1
22
+…+
1
2n-2
-(2n-1)
1
2n
=1+
1-
1
2n-1
1-
1
2
-(2n-1)
1
2n
=1+2-
1
2n-2
-(2n-1)
1
2n
=3-(2n+3)(
1
2
n

则f(

1
2
)=3-(2n+3)(
1
2
n

(3)由(2)的结论,f(

1
2
)=3-(2n+3)(
1
2
n

又由(2n+3)(

1
2
n>0,

易得3-(2n+3)(

1
2
n<3,

则f(

1
2
)<3.

单项选择题
单项选择题