问题
解答题
设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3,…). (1)求证:数列{an}为等差数列,并写出an关于n的表达式; (2)若数列{
|
答案
(Ⅰ)当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-2(n-1),得an-an-1=2(n=2,3,4,).
所以数列{an}是以a1=1为首项,2为公差的等差数列.
所以an=2n-1.
(Ⅱ)Tn=
+1 a1a2
++1 a2a3
=1 an-1an
+1 1×3
+1 3×5
++1 5×7
=1 (2n-1)(2n+1)
[(1 2
-1 1
)+(1 3
-1 3
)+(1 5
-1 5
)++(1 7
-1 2n-1
)]=1 2n+1
(1-1 2
)=1 2n+1 n 2n+1
由Tn=
>n 2n+1
,得n>100 209
,满足Tn>100 9
的最小正整数为12.100 209