问题
解答题
已知等差数列{an}中,d>0,a3a7=-16,a2+a8=0,设Tn=|a1|+|a2|+…+|an|.求:
(I){an}的通项公式an;
(II)求Tn.
答案
(1)由等差数列的性质可得a2+a8=a3+a7=0,
∵a3a7=-16,且d>0(2分)
∴a3=-4,a7=4,4d=a7-a3=8
∴d=2
∴an=a3+(n-3)d=-4+2(n-3)=2n-10.…(6分)
(II)当1≤n≤5时,Tn=|a1|+|a2|+…+|an|=-(a1+a2+…an)=-
•n=9n-n2.…(9分)-8+2n-10 2
当n≥6时,Tn=|a1|+|a2|+…+|an|=-(a1+a2+…a5)+a6+a7+…+an
=-2(a1+a2+…+a5)+a1+a2+…+an
=-
×5+-8+0 2
•n=n2-9n+40-8+2n-10 2
综上:Tn=
.…(13分)9n-n2(1≤n≤5) n2-9n+40(n≥6)