问题
解答题
已知数列{an}是等差数列,a2=3,a4+a5+a6=27,Sn为数列{an}的前n项和
(1)求an和Sn; (2)若bn=a2n,求数列{bn}的前n项和Tn.
答案
(1)由已知a4+a5+a6=27,可得3a5=27
解得a5=9.(1分)
设等差数列的公差为d,则a5-a2=3d=6,解得d=2..(2分)
∴an=a2+(n-2)d=3+(n-2)×2=2n-1..(4分)
故sn=
=n(a1+an) 2
=n2n(1+2n-1) 2
综上,an=2n-1,sn=n2(6分)
(2)∵bn=a2n=2n+1-1.(8分)
∴Tn=(22-1)+(23-1)+…+(2n+1-1)..(9分)
=(22+23++2n+1)-n
=2n+2-n-4
即Tn=2n+2-n-4.(12分)