问题
填空题
已知数列{an}的前n项和Sn=-2n2+3n,则数列{an}的通项公式为______.
答案
∵Sn=-2n2+3n,
∴a1=S1=-2+3=1,
an=Sn-Sn-1=(-2n2+3n)-[-2(n-1)2+3(n-1)]
=5-4n.
当n=1时,5-4n=1=a1,
∴an=5-4n,
故答案为:an=5-4n.
已知数列{an}的前n项和Sn=-2n2+3n,则数列{an}的通项公式为______.
∵Sn=-2n2+3n,
∴a1=S1=-2+3=1,
an=Sn-Sn-1=(-2n2+3n)-[-2(n-1)2+3(n-1)]
=5-4n.
当n=1时,5-4n=1=a1,
∴an=5-4n,
故答案为:an=5-4n.