问题 解答题
已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=35,且a2,a7,a22成等比数列.
(I)求数列{an}的通项公式;
(II)设数列{
1
Sn
}
的前n项和为Tn,求Tn
答案

(I)设数列的首项为a1,则

∵S5=35,且a2,a7,a22成等比数列

5a1+10d=35
(a1+6d)2=(a1+d)(a1+21d)

∵d≠0,∴d=2,a1=3

∴an=3+(n-1)×2=2n+1;

(II)Sn=

n(3+2n+1)
2
=n(n+2)

1
Sn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

∴Tn=

1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)
=
3
4
-
2n+3
2(n+1)(n+2)

单项选择题
判断题