问题
解答题
已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=35,且a2,a7,a22成等比数列. (I)求数列{an}的通项公式; (II)设数列{
|
答案
(I)设数列的首项为a1,则
∵S5=35,且a2,a7,a22成等比数列
∴5a1+10d=35 (a1+6d)2=(a1+d)(a1+21d)
∵d≠0,∴d=2,a1=3
∴an=3+(n-1)×2=2n+1;
(II)Sn=
=n(n+2)n(3+2n+1) 2
∴
=1 Sn
=1 n(n+2)
(1 2
-1 n
)1 n+2
∴Tn=
(1-1 2
+1 3
-1 2
+1 4
-1 3
+…+1 5
-1 n
)=1 n+2
(1+1 2
-1 2
-1 n+1
)=1 n+2
-3 4 2n+3 2(n+1)(n+2)