问题
填空题
设F1,F2是双曲线C:
|
答案
因为F1、F2是双曲线的两个焦点,P是双曲线上一点,且满足|PF1|+|PF2|=6a,
不妨设P是双曲线右支上的一点,由双曲线的定义可知|PF1|-|PF2|=2a
所以|F1F2|=2c,|PF1|=4a,|PF2|=2a,
∵△PF1F2的最小内角∠PF1F2=30°,由余弦定理,
∴|PF2|2=|F1F2|2+|PF1|2-2|F1F2||PF1|cos∠PF1F2,
即4a2=4c2+16a2-2c×4a×
,3
∴c2-2
ca+3a2=0,3
∴c=
a3
所以e=
=c a
.3
故答案为:
.3