问题 解答题
已知各项均为正数的等差数列{an}的前以项和为Sn,若S3=18,且a1+1,a2,a3成等比数列.
(1)求{an}的通项公式;
(2)记bn=
an
3n+1
(n∈N*),求数列{bn}的前n项和Tn
答案

(1)∵S3=18,a1+1,a2,a3成等比数列

a22=(a1+1)a3

3a1+3d=18
(a1+d)2=(1+a1)(a1+2d)

解可得,d=3或d=-2(舍去),a1=3

∴an=3+3(n-1)=3n

(2)∵bn=

an
3n+1
=
3n
3n+1
=
n
3n

∴Tn=1•

1
3
+2•
1
32
+…+n•
1
3n

1
3
Tn=1•
1
32
+2•
1
33
+…+
n-1
3n
+
n
3n+1

两式相减可得,

2
3
Tn=
1
3
+
1
32
+…+
1
3n
-
n
3n+1
1
3
(1-
1
3n
)
1-
1
3
-
n
3n+1

Tn=

3-3n-1
4
-
n
2•3n

单项选择题
单项选择题 A3/A4型题