问题
解答题
已知各项均为正数的等差数列{an}的前以项和为Sn,若S3=18,且a1+1,a2,a3成等比数列. (1)求{an}的通项公式; (2)记bn=
|
答案
(1)∵S3=18,a1+1,a2,a3成等比数列
∴a22=(a1+1)a3
∴3a1+3d=18 (a1+d)2=(1+a1)(a1+2d)
解可得,d=3或d=-2(舍去),a1=3
∴an=3+3(n-1)=3n
(2)∵bn=
=an 3n+1
=3n 3n+1 n 3n
∴Tn=1•
+2•1 3
+…+n•1 32 1 3n
Tn=1•1 3
+2•1 32
+…+1 33
+n-1 3n n 3n+1
两式相减可得,
Tn=2 3
+1 3
+…+1 32
-1 3n n 3n+1
-
(1-1 3
)1 3n 1- 1 3 n 3n+1
∴Tn=
-3-3n-1 4 n 2•3n