问题 解答题
已知函数f(x)=( x-1)2,数列{an}是公差为d的等差数列,{bn}是公比为q(q∈R且q≠1)的等比数列,若a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1).
(1)求数列{an}和{bn}的通项公式;
(2)设数列{cn}的前n项和为Sn,且对一切自然数n,均有
c1
b1
+
c2
b2
+…+
cn
bn
=an+1,求
lim
n→∞
S2n+1
S2n
的值.
答案

(Ⅰ)∵a3-a1=2d,∴f(d+1)-f(d-1)=2d.

即d2-(d-2)2=2d,解得d=2.

∴a1=f(2-1)=0.∴an=2(n-1).

b3
b1
=q2,∴
f(q-1)
f(q+1)
=q2=
(q-2)2
q2

∵q≠0,q≠1,∴q=-2.

又b1=f(q+1)=4,∴bn=4•(-2)n-1

(Ⅱ)由题设知

c1
b1
=a2,∴c1=a2b1=8.

当n≥2时,

c1
b1
+
c2
b2
+…+
cn
bn
=an+1
c1
b1
+
c2
b2
+…+
cn-1
bn-1
=an

两式相减,得

cn
bn
=an+1-an=2.

∴cn=2bn=2×3n-1(n≥2).

∴S2n+1=c1+c2+c3+…+c2n+1=8+2(3+32+…+32n)=8+

32n+1-3
3 -1
=32n+1+5.

即S2n=32n+1+5-2×32n=32n+5.

lim
n→∞
S2n+1
S2n
=
lim
n→∞
32n+1+5
32n+5
=3

填空题
单项选择题