已知函数f(x)=( x-1)2,数列{an}是公差为d的等差数列,{bn}是公比为q(q∈R且q≠1)的等比数列,若a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1). (1)求数列{an}和{bn}的通项公式; (2)设数列{cn}的前n项和为Sn,且对一切自然数n,均有
|
(Ⅰ)∵a3-a1=2d,∴f(d+1)-f(d-1)=2d.
即d2-(d-2)2=2d,解得d=2.
∴a1=f(2-1)=0.∴an=2(n-1).
∵
=q2,∴b3 b1
=q2=f(q-1) f(q+1)
.(q-2)2 q2
∵q≠0,q≠1,∴q=-2.
又b1=f(q+1)=4,∴bn=4•(-2)n-1.
(Ⅱ)由题设知
=a2,∴c1=a2b1=8.c1 b1
当n≥2时,
+c1 b1
+…+c2 b2
=an+1,cn bn
+c1 b1
+…+c2 b2
=an,cn-1 bn-1
两式相减,得
=an+1-an=2.cn bn
∴cn=2bn=2×3n-1(n≥2).
∴S2n+1=c1+c2+c3+…+c2n+1=8+2(3+32+…+32n)=8+2×
=32n+1+5.32n+1-3 3 -1
即S2n=32n+1+5-2×32n=32n+5.
∴lim n→∞
=S2n+1 S2n lim n→∞
=332n+1+5 32n+5