问题
解答题
已知{an}为等差数列,且a1=2,a1+a2+a3=12.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=an•2an,求数列{bn}的前n项和Tn.
答案
(I)设等差数列{an}的公差为d
∵a1=2,a1+a2+a3=12
∴3a1+3d=12即3×2+3d=12
解得d=2
∴an=2n
(II))∵an=2n,
∴bn=an•22n=2n•4n,
∴Tn=2×4+4×42+6×43+…+2(n-1)×4n-1+2n×4n,①
4Tn=2×42+4×43+6×44+…+2(n-1)×4n+2n×4n+1,②
①-②得-3Tn=2×4+2×42+2×43+2×44+…+2×4n-2n×4n+1
=2×
-2n×4n+14(1-4n) 1-4
∴Tn=
+8 9
(1+3n)4n.8 9