问题
解答题
已知等差数列{an}的前n项和为Sn,且a2=17,S10=100.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn=ancos(nπ)+2n(n∈N*),求数列{bn}的前n项和.
答案
(I)设an首项为a1,公差为d,
则
解得a1+d=17
=10010(2a1+9d) 2
(5分)∴an=19+(n-1)×(-2)=21-2n(7分)a1=19 d=-2
(II)∵bn=ancos(nπ)+2n=(-1)nan+2n
当n为偶数时,Tn=b1+b2++bn=(-a1+2)+(a2+22)+(-a3+23)+…+(an+2n)
=(-2)×
+n 2
=2n+1-n-2(10分)2(1-2n) 1-2
当n为奇数时,Tn=b1+b2++bn=(-a1+2)+(a2+22)+(-a3+23)+…+(-an+2n)
=-a1+(a2-a3)+…+(an-1-an)+2(1-2n) 1-2
=-19+2×
+2n+1-2=2n+1+n-22(13分)n-1 2
∴Tn=
(14分)2n+1-n-2(当n为偶数) 2n+1+n-22(当n为奇数)