问题
解答题
已知各项均为正数的数列{an}满足:a1=3,
(I)求数列{an}的通项公式; (II)求证:Sn<
|
答案
(I)∵
=an+1+an n+1
,8 an+1-an
∴an+12-an2=8(n+1)
∴an2=(an2-an-12)+(an-12-an-22)+…+(a22-a12)+a12=8[n+(n-1)+…+2]+9=(2n+1)2
∴an=2n+1.…(5分)
(II)
=b 2n
=1 a 2n
<1 (2n+1)2
=1 4n(n+1)
(1 4
-1 n
)∴Sn<1 n+1
[(1-1 4
)+(1 2
-1 2
)+…+(1 3
-1 n
)]=1 n+1
(1-1 4
)<1 n+1
…(12分)1 4