问题
解答题
数列{an}为等差数列,an为正整数,其前n项和为Sn,数列{bn}为等比数列,且a1=3,b1=1,数列{ban}是公比为64的等比数列,b2S2=64. (1)求an,bn; (2)求证
|
答案
(1)设{an}的公差为d,{bn}的公比为q,则d为正整数,an=3+(n-1)d,bn=qn-1
依题意有
①
=ban+1 ban
=qd=64=26q3+nd q3+(n-1)d S2b2=(6+d)q=64
由(6+d)q=64知q为正有理数,故d为6的因子1,2,3,6之一,
解①得d=2,q=8
故an=3+2(n-1)=2n+1,bn=8n-1
(2)Sn=3+5++(2n+1)=n(n+2)
∴
+1 S1
++1 S2
=1 Sn
+1 1×3
+1 2×4
++1 3×5
=1 n(n+2)
(1-1 2
+1 3
-1 2
+1 4
-1 3
++1 5
-1 n
)=1 n+2
(1+1 2
-1 2
-1 n+1
)<1 n+2
.3 4