问题
解答题
已知等差数列数﹛an﹜的前n项和为Sn,等比数列﹛bn﹜的各项均为正数,公比是q,且满足:a1=3,b1=1,b2+S2=12,S2=b2q. (Ⅰ)求an与bn; (Ⅱ)设cn=3bn-λ•2
|
答案
(Ⅰ)由S2=a1+a2=3+a2,b2=b1q=q,且b2+S2=12,S2=b2q.
∴
,消去a2得:q2+q-12=0,解得q=3或q=-4(舍),q+3+a2=12 3+a2=q2
∴a2=q2-3=32-3=6,则d=a2-a1=6-3=3,
从而an=a1+(n-1)d=3+3(n-1)=3n,
bn=b1qn-1=3n-1;
(Ⅱ)∵an=3n,bn=3n-1,∴cn=3bn-λ•2
=3n-λ2n.an 3
∵cn+1>cn对任意的n∈N*恒成立,即:3n+1-λ•3n+1>3n-λ•2n恒成立,
整理得:λ•2n<2•3n对任意的n∈N*恒成立,
即:λ<2•(
)n对任意的n∈N*恒成立.3 2
∵y=2•(
)x在区间[1,+∞)上单调递增,∴ymin=2•3 2
=3,3 2
∴λ<3.
∴λ的取值范围为(-∞,3).