问题
解答题
设{an}是正数组成的数列,其前n项的和为Sn,并且对于所有的自然数n,存在正数t,使an与t的等差中项等于Sn与t的等比中项.
(1)求 {an}的通项公式;
(2)若n=3时,Sn-2t•an取得最小值,求t的取值范围.
答案
(1)由题意:
=t+an 2
即2tSn
=t+antSn
当n=1时,2
=t+a1=t+a1,∴(ta1
-a1
)2=0,a1=t…..(3分)t
当n≥2时,2
=t+an∴4tSn=t2+2tan+an2①4tSn-1=t2+2tan-1+an-12②tSn
①-②得4tan=2tan-2tan-1+(an2-an-12)2t(an+an-1)=(an+an-1)(an-an-1),
∵an+an-1≠0,∴an-an-1=2t∴{an}是以t为首项,2t为公差的等差数列,an=(2n-1)t….(8分)
(2)∴Sn=tn2,an+t=2
=2nt,∴an=(2n-1)tSn-2t•an=tn2-(2n-1)•2t2=tn2-4t2n+2t2,tSn
设f(x)=tx2-4t2x+2t2,∵当x取3 时有最大值,对称轴
=2t∈[4t2 2t
,5 2
]∴t∈[7 2
,5 4
]…(12分)7 4