已知各项均为正数的数列{an}满足:
(I)求a1,a2,a3的值,猜测an的表达式并给予证明; (II)求证:sin
(III)设数列{sin
|
(Ⅰ)a1=2,a2=3,a3=4,猜测:an=n+1
下用数学归纳法
①当n=1时,a1=1+1=2,猜想成立;
②假设当n=k(k≥1)时猜想成立,即ak=k+1
由条件a1+2a2+3a3+…+nan=
∴a1+2a2+3a3+…+(n-1)an-1=n(an+1)an 3
(n≥2)(n-1)(an-1+1)an-1 3
两式相减得:nan=
-n(an+1)an 3 (n-1)(an-1+1)an-1 3
则当n=k+1时,(k+1)ak+1=
-(k+1)(ak+1+1) 3
⇒k(ak+1)ak 3
-2ak+1-k(k+2)=0∴ak+1=k+2即当n=k+1时,猜想也成立a 2k+1
故对一切的n∈N*,an=n+1成立
(Ⅱ)设f(x)=sinx-
x(0<x<2 π
)π 2
由f′(x)=cosx-
=0⇒x=arccos2 π 2 π
由y=cosx的单调性知f(x)在(0,
]内有且只有一个极大值点,π 2
且f(0)=f(
)=0∴在(0,π 2
)内f(x)>0π 3
即sinx>
x(0<x<2 π
).π 2
令x=
,当n≥2时有π an
∈(0,π an
),∴sinπ 2
>π an 2 an
又当n=1时,
=π an
,∴sinπ 2
=π an
∴sin2 an
≥π an
(n∈N*)2 an
(Ⅲ)∵anan+1≥6,∴
∈(0,1 anan+1
)π 2
由(Ⅱ)可知sin
>π anan+1
∴Sn=sin2 anan+1
+sinπ 2•3
+…+sinπ 3•4
>2(π (n+1)•(n+2)
-1 2
+1 3
-1 3
+…+1 4
-1 n+1
)=2(1 n+2
-1 2
)≥1 n+2 1 3
即对一切n∈N*,Sn>
.1 3
又∵在(0,
)内sinx<x∴Sn=sinπ 2
+sinπ 2•3
+…+sinπ 3•4
<π(π (n+1)•(n+2)
-1 2
+1 3
-1 3
+…+1 4
-1 n+1
)=π(1 n+2
-1 2
)<1 n+2 π 2
即对一切n∈N*,Sn<
.∴π 2
<Sn<1 3
.π 2