已知数列{an}的前n项和为Sn,且对于任意的n∈N*,恒有Sn=2an-n,设bn=log2(an+1), (1)求证数列{an+1}是等比数列; (2)求数列{an},{bn}的通项公式an和bn; (3)设cn=
|
(1)当n=1时,S1=2a1-1,得a1=1. (1分)
∵Sn=2an-n,
∴当n≥2时,Sn-1=2an-1-(n-1),
两式相减得:an=2an-2an-1-1,
∴an=2an-1+1. (3分)
∴an+1=2an-1+2=2(an-1+1),(5分)
∴{an+1}是以a1+1=2为首项,2为公比的等比数列. (6分)
(2)由(1)得an+1=2•2n-1=2n,∴an=2n-1,n∈N*. (8分)
∴bn=log2(an+1)=log22n=n,n∈N*. (10分)
(3)cn=
,cn+1=2n anan+1
①2n+1 an+1an+2
cn+1-cn=
-2n+1 (2n+1-1)(2n+2-1) 2n (2n-1)(2n+1-1) =
<0-2×4n-2n (2n+1-1)(2n+2-1)(2n-1)
∴数列{cn}单调递减.(12分)
∴①n=1时数列{cn}的最大值为c1=
.(14分)2 3
②由cn=
=2n (2n-1)(2n+1-1)
-1 2n-1
,(16分)1 2n+1-1
所以c1+c2+…+cn=1-
.∴1 2n+1-1
(c1+c2+…+cn)=1.(18分)lim n→∞