问题 选择题
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的一条渐近线的斜率为
2
,且右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的离心率等于(  )
A.
2
B.
3
C.2D.2
3
答案

抛物线y2=4

3
x的焦点坐标为(
3
,0)

双曲线的右焦点为(c,0),

c=

3
.渐近线为y=±
b
a
x

因为一条渐近线的斜率为

2

所以

b
a
=
2
,即b=
2
a

所以b2=2a2=c2-a2,即c2=3a2

e2=3,e=

3

故选B.

填空题
单项选择题