已知函数f(x)=
(Ⅰ)证明f(x)+f(1-x)=
(Ⅱ)若数列{an}的通项公式为an=f(
(Ⅲ)设数列{bn}满足:b1=
|
(Ⅰ)证明:∵f(x)=
,1 4x+2
∴f(1-x)=
=1 41-x+2
=4x 4+2•4x
,4x 2(4x+2)
∴f(x)+f(1-x)=
+1 4x+2
=4x 2(4x+2)
=2+4x 2(4x+2)
.1 2
故答案为
..1 2
(Ⅱ)由(Ⅰ)可知f(x)+f(1-x)=
,1 2
∴f(
)+f(1-k m
)=k m
(1≤k≤m-1),1 2
即f(
)+f(k m
)=m-k m
.1 2
∴ak+am-k=
,1 2
am=f(
)=f(1)=m m
,1 6
又Sm=a1+a2++am-1+am①Sm=am-1+am-2++a1+am②
①+②得2Sm=(m-1)×
+2am=1 2
-m 2
,1 6
∴答案为Sm=
(3m-1);1 12
(Ⅲ)∵b1=
,bn+1=1 3
+bn=bn(bn+1)③b 2n
∴对任意n∈N*,bn>0④
=1 bn+1
=1 bn(bn+1)
-1 bn
,1 bn+1
∴
=1 bn+1
-1 bn
,1 bn+1
∴Tn=(
-1 b1
)+(1 b2
-1 b2
)++(1 b3
-1 bn
)=1 bn+1
-1 b1
=3-1 bn+1 1 bn+1
∵bn+1-bn=bn2>0,∴bn+1>bn.
∴数列{bn}是单调递增数列.∴Tn关于n递增,
∴当n≥2,且n∈N*时,Tn≥T2.
∵b1=
,b2=1 3
(1 3
+1)=1 3
,b3=4 9
(4 9
+1)=4 9
,52 81
∴Tn≥T2=3-
=1 b3
.(14分)75 52
由题意Sm<
,即75 52
(3m-1)<1 12
,75 52
∴m<
=6238 39
∴m的最大值为6.4 39
故答案为6.