问题
解答题
等差数列{an}前n项和为Sn,且S5=45,S6=60. (1)求{an}的通项公式an; (2)若数列{an}满足bn+1-bn=an(n∈N*)且b1=3,求{
|
答案
(1)设等差数列{an}的公差为d,∵S5=45,S6=60,∴
|
|
(2)∵bn+1-bn=an=2n+1,b1=3,
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=[2(n-1)+3]+[2(n-2)+3]+…+(2×1+3)+3
=2×
n(n-1) |
2 |
=n2+2n.
∴
1 |
bn |
1 |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
∴Tn=
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
n-1 |
1 |
n+1 |
1 |
n |
1 |
n+2 |
=
1 |
2 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
=
3 |
4 |
1 |
2(n+1) |
1 |
2(n+2) |