问题
解答题
等差数列{an}前n项和为Sn,且S5=45,S6=60. (1)求{an}的通项公式an; (2)若数列{an}满足bn+1-bn=an(n∈N*)且b1=3,求{
|
答案
(1)设等差数列{an}的公差为d,∵S5=45,S6=60,∴
,解得5a1+
d=455×4 2 6a1+
d=606×5 2
.∴an=5+(n-1)×2=2n+3.a1=5 d=2
(2)∵bn+1-bn=an=2n+1,b1=3,
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=[2(n-1)+3]+[2(n-2)+3]+…+(2×1+3)+3
=2×
+3nn(n-1) 2
=n2+2n.
∴
=1 bn
=1 n(n+2)
(1 2
-1 n
).1 n+2
∴Tn=
[(1-1 2
)+(1 3
-1 2
)+(1 4
-1 3
)+…+(1 5
-1 n-1
)+(1 n+1
-1 n
)]1 n+2
=
(1+1 2
-1 2
-1 n+1
)1 n+2
=
-3 4
-1 2(n+1)
.1 2(n+2)