问题
解答题
已知数列{an}的前n项和为Sn,且Sn=n2+2n.数列{bn}中,b1=1,bn=abn-1(n≥2). (1)求数列{an}的通项公式; (2)若存在常数t使数列{bn+t}是等比数列,求数列{bn}的通项公式; (3)求证:①bn+1>2bn;②
|
答案
(1)n=1时,a1=S1=3,n≥2时,an=Sn-Sn-1=(n2+2n)-(n-1)2-2(n-1)=2n+1,
且n=1时也适合此式,故数列{an}的通项公式是an=2n+1;
(2)依题意,n≥2时,bn=abn-1=2bn-1+1,
∴bn+1=2(bn-1+1),又b1+1=2,
∴{bn+1}是以2为首项,2为公比的等比数列,
即存在常数t=2使数列{bn+t}是等比数列bn+1=2•2n-1=2n,即bn=2n-1.
(3)①bn+1-2bn=(2n+1-1)-2(2n-1)=1>0所以bn+1>2bn对一切自然数n都成立.
②由bn+1>2bn得
<1 bn+1
,设S=1 2bn
+1 b1
+1 b2
++1 b3
,1 bn
则S<
+1 b1
+1 2b1
+…+1 2b2
=1 2bn-1
+1 b1
(S-1 2
),所以S<1 2bn
-2 b1
=2-1 bn
.1 bn