问题 解答题

设{an}是各项都为正数的等比数列,{bn}是等差数列,且a1=b1=1,a3+b5=21,a5+b3=25.

(1)求数列{an},{bn}的通项公式;

(2)设数列{an}的前n项和为Sn,求数列{Sn-bn}的前n项和Tn

答案

(1)设等比数列{an}的公比为q,等差数列{bn}的公差为d,

∵a1=b1=1,a3+b5=21,a5+b3=25.

∴q2+(1+4d)=21,q4+(1+2d)=25

解之得q=2,d=4(舍去负值)

∴an=a1qn-1=2n-1,bn=b1+(n-1)d=4n-3

即数列{an}的通项公式为an=2n-1,{bn}的通项公式bn=4n-3;

(2)由(1)得{an}的前n项和Sn=

1-2n
1-2
=2n-1,

∴Sn-bn=2n-1-(4n-3)=2n-4n+2

因此,{Sn-bn}的前n项和为

Tn=(21-4×1+2)+(22-4×2+2)+…+(2n-4×n+2)

=(2+22+…+2n)-4(1+2+…+n)+2n

=2n+1-2-4×

n(n+1)
2
+2n=2n+1-2n2-2.

单项选择题
单项选择题