问题
解答题
设{an}是各项都为正数的等比数列,{bn}是等差数列,且a1=b1=1,a3+b5=21,a5+b3=25.
(1)求数列{an},{bn}的通项公式;
(2)设数列{an}的前n项和为Sn,求数列{Sn-bn}的前n项和Tn.
答案
(1)设等比数列{an}的公比为q,等差数列{bn}的公差为d,
∵a1=b1=1,a3+b5=21,a5+b3=25.
∴q2+(1+4d)=21,q4+(1+2d)=25
解之得q=2,d=4(舍去负值)
∴an=a1qn-1=2n-1,bn=b1+(n-1)d=4n-3
即数列{an}的通项公式为an=2n-1,{bn}的通项公式bn=4n-3;
(2)由(1)得{an}的前n项和Sn=
=2n-1,1-2n 1-2
∴Sn-bn=2n-1-(4n-3)=2n-4n+2
因此,{Sn-bn}的前n项和为
Tn=(21-4×1+2)+(22-4×2+2)+…+(2n-4×n+2)
=(2+22+…+2n)-4(1+2+…+n)+2n
=2n+1-2-4×
+2n=2n+1-2n2-2.n(n+1) 2