问题
解答题
在等差数列{an}中,a1=8,a4=2, (1)求数列{an}的通项; (2)设bn=
|
答案
(1)∵a1=8,a4=2,
∴a4-a1=3d=-6,
∴d=-2
an=a1+(n-1)d=8-2(n-1)=10-2n,(n∈N*),
(2)∵bn=
=1 n(12-an)
=1 n[12-(10-2n)]
•1 2
=1 n(n+1)
(1 2
-1 n
)1 n+1
∴Tn=
(1-1 2
)+1 2
(1 2
-1 2
)+1 3
(1 2
-1 3
)+…+1 4
(1 2
-1 n
)1 n+1
=
[(1-1 2
)+(1 2
-1 2
)+(1 3
-1 3
)+…+(1 4
-1 n
)]1 n+1
=
(1-1 2
)1 n+1
=n 2n+2