问题
解答题
已知数列{an}满足an+1+an=4n-3(n∈N*).
(1)若数列{an}是等差数列,求a1的值;
(2)当a1=2时,求数列{an}的前n项和Sn.
答案
(1)若数列{an}是等差数列,则an=a1+(n-1)d,an+1=a1+nd.
由an+1+an=4n-3,得(a1+nd)+[a1+(n-1)d]=4n-3,即2d=4,2a1-d=-3,
解得,d=2,a1=-
.…(7分)1 2
(2)①当n为奇数时,Sn=a1+a2+a3+…+a_=a1+(a2+a3)+(a4+a5)+…+(an-1+an)=2+4[2+4+…+(n-1)]-3×
=n-1 2
…(11分)2n2-3n+5 2
②当n为偶数时,Sn=a1+a2+a3+…+an=(a1+a2)+(a3+a4)+…+(an-1+an)=1+9+…+(4n-7)=
.(14分)2n2-3n 2