问题
解答题
设{an}是正数组成的数列,前n项和为Sn且an=2
(Ⅰ)写出数列{an}的前三项; (Ⅱ)求数列{an}的通项公式,并写出推证过程; (Ⅲ)令bn=
|
答案
(Ⅰ)∵an=2
-22Sn
n=1时可得,a1=2
-2∴a1=22s1
把n=2代入可得a2=6,n=3代入可得a3=10;
(Ⅱ)8Sn=an2+4an+4…(1)
8Sn+1=an+12+4an+1+4…(2)
(2)-(1)得8an+1=an+12-an2+4an+1-4an
(an+1+an)(an+1-an-4)=0
∵an+1+an>0
∴an+1-an-4=0
an+1-an=4
∴{an}是以2为首项,4为公差的等差数列.an=a1+(n-1)d=4n-2
( III)bn=
=4 an•an+1
=4 (4n-2)(4n+2)
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
)1 2n+1
∴Tn=b1+b2+…+bn
=
(1-1 2
+1 3
-1 3
+…+1 5
-1 2n-1
)1 2n+1
=
(1-1 2
)=1 2n+1
.n 2n+1