问题
单项选择题
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0,必有()
A. (Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解
B. (Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解
C. (Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解
D. (Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解
答案
参考答案:A
解析:
若η是(Ⅰ)的解,则Aη=0,那么(ATA)η=AT(Aη)=AT0=0,即η是(Ⅱ)的解.
若α是(Ⅱ)的解,有ATAα=0,用αT左乘得αTATAα=0,即(Aα)T(Aα)=0.
亦即Aα自己的内积(Aα,Aα)=0,故必有Aα=0,即α是(Ⅰ)的解.
所以(Ⅰ)与(Ⅱ)同解,故应选(A).