问题
解答题
已知数列{an}是等差数列,a3=5,a5=9.数列{bn}的前n项和为Sn,且Sn=
(1)求数列{an}和{bn}的通项公式; (2)若cn=an•bn,求数列{cn}的前n项和 Tn. |
答案
(1)法一:设数列的公差为d
由题意可得a1++2d=5 a1+4d=9
解得a1=1,d=2
∴an=1+2(n-1)=2n-1
法二:设数列的公差是d
∴d=
=a5-a3 5-3
=29-5 2
∴an=a5+2(n-5)=9+2n-10=2n-1
∵sn=1-bn 2
当n=1时,b1=s1=1-b1 2
∴b1=1 3
当n≥2时,bn=sn-sn-1=
(1-bn)-1 2
(1-bn-1)1 2
=
(bn-1-bn)1 2
∴
=bn bn-1 1 3
∴数列{bn}是以
为首项,以1 3
为公比的等比数列1 3
∴bn=b1qn-1=(
)n1 3
(2)cn=an•bn=2n-1 3n
∴Tn=
+1 3
+…+3 32 2n-1 3n
Tn=1 3
+1 32
+…+3 33
+2n-3 3n
lll2n-1 3n+1
两式相减可得,
=2Tn 3
+2(1 3
+1 3
+…+1 32
)-1 3n 2n-1 3n+1
=
+1 3
-
(1-2 9
)1 3n-1 1- 1 3 2n-1 3n+1
=
-2 3 2n+2 3n+1
Tn=1-n+1 3n