问题
解答题
在等差数列{an}中,a1=3,前n项和Sn满足条件
(Ⅰ)求数列{an}的通项公式; (Ⅱ)记bn=
|
答案
(1)设等差数列{an}的公差为d,
由
=Sn+2 Sn
对一切正自然数n都成立可知,n+4 n
当n=1时,得:
=S3 S1
=5,又a1=3,所以d=2,3a1+3d a1
所以an=3+2(n-1)=2n+1.
(2)由(Ⅰ)知等差数列{an}的前n项和Sn=
=n(n+2)n(3+2n+1) 2
∴bn=
=1 Sn
=1 n(n+2)
(1 2
-1 n
)1 n+2
∴Tn=b1+b2+…+bn
=
(1-1 2
+1 3
-1 2
+1 4
-1 3
+…+1 5
-1 n
)1 n+2
=
(1+1 2
-1 2
-1 n+1
)1 n+2
=
-3 4
(1 2
+1 n+1
)1 n+2