问题 解答题
在等差数列{an}中,a1=3,前n项和Sn满足条件
Sn+2
Sn
=
n+4
n
,n=1,2,3,…
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=
1
Sn
,数列{bn}的前n项和为Tn,求Tn
答案

(1)设等差数列{an}的公差为d,

Sn+2
Sn
=
n+4
n
对一切正自然数n都成立可知,

当n=1时,得:

S3
S1
=
3a1+3d
a1
=5,又a1=3,所以d=2,

所以an=3+2(n-1)=2n+1.

(2)由(Ⅰ)知等差数列{an}的前n项和Sn=

n(3+2n+1)
2
=n(n+2)

bn=

1
Sn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

∴Tn=b1+b2+…+bn

=

1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)

=

1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=

3
4
-
1
2
(
1
n+1
+
1
n+2
)

单项选择题
选择题