问题
解答题
等差数列{an}中,a2+a3+a4=15,a5=9. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=3
|
答案
(Ⅰ)设数列{an}的公差为d首项为a1,由题意得,
,即a2+a3+a4=15 a5=9
,3a1+6d=15 a1+4d=9
解得a1=1,d=2,
∴数列{an}的通项公式an=2n-1,
(Ⅱ)由(Ⅰ)可得bn=3
=3n,∴an+1 2
×bn=n3n,an+1 2
∴Sn=1×3+2×32+3×33+…+n×3n,①
3Sn=1×32+2×33+3×34+…+n×3n+1,②
①-②得,-2Sn=3+32+33+…+3n-n×3n+1=
-n×3n+13(1-3n) 1-3
=
-n×3n+1,3(3n-1) 2
∴Sn=
.3+(2n-1)•3n+1 4