问题
解答题
在等差数列{an}中,a1=1,a5=9,在数列{bn}中,b1=2,且bn=2bn-1-1,(n≥2) (1)求数列{an}和{bn}的通项公式; (2)设Tn=
|
答案
(1)由等差数列的通项公式可得,d=
=2a5-a1 5-1
∴an=1+2(n-1)=2n-1
由bn=2bn-1-1可得bn-1=2(bn-1-1)(n≥2)
∴{bn-1}是以b1-1=1为首项,2为公比的等比数列
∴bn-1=2n-1
故bn=2n-1+1
(2)Tn=
+a1 b1-1
+…+a2 b2-1
=an bn-1
+2-1 20
+…+2×2-1 22-1 2n-1 2n-1
=1+
+3 2
+…+5 4
+2n-3 2n-2
①2n-1 2n-1
则
Tn=1 2
+1 2
+3 4
+…+5 8
+2n-3 2n-1
②2n-1 2n
①-②可得
Tn=1+2(1 2
+1 2
+…+1 2 2
)-1 2 n-1 2n-1 2n
=1+2×
-
[1-(1 2
)n-1]1 2 1- 1 2 2n-1 2n
=1+2-(
)n-2-(2n-1)(1 2
)n1 2
=3-(
)n[4+(2n-1)]=3-(2n+3)(1 2
)n1 2
所以Tn=6-2n+3 2n-1