问题 解答题
在等差数列{an}中,a1=1,a5=9,在数列{bn}中,b1=2,且bn=2bn-1-1,(n≥2)
(1)求数列{an}和{bn}的通项公式;
(2)设Tn=
a1
b1-1
+
a2
b2- 1
+
a3
b3-1
+…+
an
bn-1
,求Tn
答案

(1)由等差数列的通项公式可得,d=

a5-a1
5-1
=2

∴an=1+2(n-1)=2n-1     

 由bn=2bn-1-1可得bn-1=2(bn-1-1)(n≥2)

∴{bn-1}是以b1-1=1为首项,2为公比的等比数列

∴bn-1=2n-1  

  故bn=2n-1+1

(2)Tn=

a1
b1-1
+
a2
b2-1
+…+
an
bn-1
=
2-1
20
+
2×2-1
22-1
+…+
2n-1
2n-1

=1+

3
2
+
5
4
+…+
2n-3
2n-2
+
2n-1
2n-1
         ①

则 

1
2
Tn=
1
2
+
3
4
+
5
8
+…+
2n-3
2n-1
+
2n-1
2n
 ②

①-②可得

1
2
Tn=1+2(
1
2
+
1
2 2
+…+
1
2 n-1
)
-
2n-1
2n

=1+2×

1
2
[1-(
1
2
)
n-1
]
1-
1
2
-
2n-1
2n

=1+2-(

1
2
)n-2-(2n-1)(
1
2
)
n

=3-(

1
2
)n[4+(2n-1)]=3-(2n+3)(
1
2
)
n

所以Tn=6-

2n+3
2n-1

单项选择题
单项选择题