问题
选择题
设F1、F2分别为双曲线
|
答案
依题意|PF2|=|F1F2|,可知三角形PF2F1是一个等腰三角形,F2在直线PF1的投影是其中点,由勾股定理知
可知|PF1|=2
=4b4c2-4a2
根据双曲定义可知4b-2c=2a,整理得c=2b-a,代入c2=a2+b2整理得3b2-4ab=0,求得
=b a 4 3
∴双曲线渐进线方程为y=±
x,即4x±3y=04 3
故选C
设F1、F2分别为双曲线
|
依题意|PF2|=|F1F2|,可知三角形PF2F1是一个等腰三角形,F2在直线PF1的投影是其中点,由勾股定理知
可知|PF1|=2
=4b4c2-4a2
根据双曲定义可知4b-2c=2a,整理得c=2b-a,代入c2=a2+b2整理得3b2-4ab=0,求得
=b a 4 3
∴双曲线渐进线方程为y=±
x,即4x±3y=04 3
故选C