问题
解答题
已知数列{bn}满足条件:首项b1=1,前n项之和Bn=
(1)求数列{bn}的通项公式; (2)设数列{an}的满足条件:an=(1+
|
答案
(1)当n>1时,bn=Bn-Bn-1
=
-3n2-n 2
=3n-23(n-1)2-(n-1) 2
令n=1得b1=1,
∴bn=3n-2.(5分)
(2)由an=(1+
)an-1,得1 bn
=1+an an-1 1 bn
∴an=
•an an-1
•an-1 an-2
a1a2 a1
由a1=2,bn=3n-2知,
an=(1+
)(1+1 3n-2
)(1+1 3n-5
)21 4
=(1+1)(1+
)(1+1 4
)1 3n-2
又
=3 bn+1
=3 3(n+1)-2
,(5分)3 3n+1
设cn=
,3 3n+1
当n=1时,有(1+1)=
>3 8
=3 3×1+1 3 4
当n=2时,有an=(1+1)(1+
)=1 4 5 2
=
>3 125 8
=3 56 8
=cn3 3×2+1
假设n=k(k≥1)时an>cn成立,
即(1+1)(1+
)(1+1 4
)>1 3k-2
成立,3 3k+1
则n=k+1时,
左边═(1+1)(1+
)(1+1 4
)(1+1 3k-2
)1 3(k+1)-2
>
(1+3 3k+1
)=1 3(k+1)-2 3 3k+1
(3分)3k+2 3k+1
右边=ck+1=
=3 3(k+1)+1 3 3k+4
由(ak+1)3-(ck+1)3=(3k+1)
-(3k+4)(3k+2)3 (3k+1)3
=(3k+2)3-(3k+4)(3k+1)2 (3k+1)2
=
>0,得ak+1>ck+1成立.9k+4 (3k+1)2
综合上述,an>cn对任何正整数n都成立.(3分)