问题 解答题
已知数列{bn}满足条件:首项b1=1,前n项之和Bn=
3n2-n
2

(1)求数列{bn}的通项公式;
(2)设数列{an}的满足条件:an=(1+
1
bn
) an-1,且a1=2,试比较an
3bn+1
的大小,并证明你的结论.
答案

(1)当n>1时,bn=Bn-Bn-1

=

3n2-n
2
-
3(n-1)2-(n-1)
2
=3n-2

令n=1得b1=1,

∴bn=3n-2.(5分)

(2)由an=(1+

1
bn
)an-1,得
an
an-1
=1+
1
bn

∴an=

an
an-1
an-1
an-2
a2
a1
a1

由a1=2,bn=3n-2知,

an=(1+

1
3n-2
)(1+
1
3n-5
)(1+
1
4
)2

=(1+1)(1+

1
4
)(1+
1
3n-2

3bn+1
=
33(n+1)-2
=
33n+1
,(5分)

设cn=

33n+1

当n=1时,有(1+1)=

38
33×1+1
=
34

当n=2时,有an=(1+1)(1+

1
4
)=
5
2

=

3
125
8
3
56
8
=
33×2+1
=cn

假设n=k(k≥1)时an>cn成立,

即(1+1)(1+

1
4
)(1+
1
3k-2
)>
33k+1
成立,

则n=k+1时,

左边═(1+1)(1+

1
4
)(1+
1
3k-2
)(1+
1
3(k+1)-2

33k+1
(1+
1
3(k+1)-2
)=
33k+1
3k+2
3k+1
(3分)

右边=ck+1=

33(k+1)+1
=
33k+4

由(ak+1)3-(ck+13=(3k+1)

(3k+2)3
(3k+1)3
-(3k+4)

=

(3k+2)3-(3k+4)(3k+1)2
(3k+1)2

=

9k+4
(3k+1)2
>0,得ak+1>ck+1成立.

综合上述,an>cn对任何正整数n都成立.(3分)

多项选择题
判断题