问题 解答题
已知等差数列{an}的前n项和为sn,且s3=12,2a1,a2,a3+1成公比大于1的等比数列.
(1)求{an}的通项公式;
(2)bn=
1
anan+1
,求{bn}的前n项和Tn
答案

(1)∵2a1,a2,a3+1成公比大于1的等比数列

a22=2a1(a3+1)

(a1+d)2=2a1(a1+2d+1)

∵3a1+3d=12

联立①②可得,

a1=1
d=3
a1=8
d=-4

a2
2a1
>1

a1=1
d=3
,an=1+3(n-1)=3n-2

(2)∵bn=

1
anan+1
=
1
(3n-2)(3n+1)
=
1
3
(
1
3n-2
-
1
3n+1
)

Tn=

1
3
(1-
1
4
+
1
4
-
1
7
+
1
7
-
1
10
+…+
1
3n-2
-
1
3n+1

=

1
3
(1-
1
3n+1
)=
n
3n+1

单项选择题
单项选择题