问题
解答题
已知等差数列{an}的前n项和为sn,且s3=12,2a1,a2,a3+1成公比大于1的等比数列. (1)求{an}的通项公式; (2)bn=
|
答案
(1)∵2a1,a2,a3+1成公比大于1的等比数列
∴a22=2a1(a3+1)
∵(a1+d)2=2a1(a1+2d+1)①
∵3a1+3d=12
联立①②可得,
或a1=1 d=3 a1=8 d=-4
∵
>1a2 2a1
∴
,an=1+3(n-1)=3n-2a1=1 d=3
(2)∵bn=
=1 anan+1
=1 (3n-2)(3n+1)
(1 3
-1 3n-2
)1 3n+1
∴Tn=
(1-1 3
+1 4
-1 4
+1 7
-1 7
+…+1 10
-1 3n-2
)1 3n+1
=
(1-1 3
)=1 3n+1 n 3n+1