问题
解答题
已知数列{an}的前n项和为 Sn=
(Ⅰ)求数列 {an} 的通项公式; (Ⅱ)求数列 {bn} 的通项公式; (Ⅲ)证明:对于 n∈N*,
|
答案
(Ⅰ)∵Sn=
an,∴2Sn=(n+1)an①,∴2Sn+1=(n+2)an+1②,n+1 2
∴①-②可得2an+1=(n+2)an+1-(n+1)an,
∴
=an+1 an n+1 n
当n≥2时,an=a1×
×…×a2 a1
=2nan an-1
∵a1=2
∴数列 {an} 的通项公式为an=2n;
(Ⅱ)∵b1=0,b2=2,
=bn+1 bn
,n≥2,2n n-1
∴n≥3时,bn=b2×
×…×b3 b2
=2n-1(n-1)bn bn-1
b1=0,b2=2满足上式,
∴数列 {bn} 的通项公式为bn=2n-1(n-1);
(Ⅲ)证明:
=2k-1(1-2bk ak
)1 k
当k≥2时,1-
≥ 1-1 k
=1 2 1 2
∴
=2k-1(1-2bk ak
)≥2k-21 k
∵b1=0,
∴
+2b1 a1
+…+2b2 a2
≥0+1+2+…+2n-2=2bn an
=2n-1-12n-1-1 2-1
∴对于n∈N*,
+2b1 a1
+…+2b2 a2
≥2n-1-12bn an