已知数列{an},{bn}分别为等差和等比数列,且a1=1,d>0,a2=b2,a5=b3,a14=b4(n∈N*).
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)设cn=an•bn,求数列{cn}的前n项和.
(1)∵a2=b2,a5=b3,a14=b4,b2,b3,b4成等比数列
∴a2,a5,a14成等比数列
∵a1=1
∴(1+d)(1+13d)=(1+4d)2
∵d>0
解可得d=2
∴an=1+2(n-1)=2n-1
∵a2=b2=3,a5=b3=9
∴q=3,bn=b2qn-2=3•3n-2=3n-1
(2)设cn=an•bn=(2n-1)•3n-1
∴sn=1•30+3•3+5•32+…+(2n-1)•3n-1
3sn=1•3+3•32+…+(2n-3)•3n-1+(2n-1)•3n
两式相减可得,-2sn=1+2(3+32+…+3n-1-(2n-1)•3n
=1+2•
-(2n-1)•3n3(1-3n-1) 1-3
=3n-2-(2n-1)•3n
∴sn=(n-1)•3n+1