问题 解答题
数列{an}的前n项和为Sn,且满足a1=1,2Sn=(n+1)an
(I)求an与an-1的关系式,并求{an}的通项公式;
(II)求和Wn=
1
a22
-1
+
1
a23
-1
+…+
1
a2n+1
-1
答案

(I)由已知

2Sn=(n+1)an
2Sn-1=nan-1
两式相减得2an=(n+1)an-nan-1,移向整理得出an=
n
n-1
an-1
(n≥2)

an
a1
=
an
an-1
an-1
an-2
•…•
a2
a1
=
n
n-1
n-1
n-2
•…•
2
1
=n,

∴an=n;且a1=1也适合,

所以an=n.

(II)

1
a2n+1
-1
=
1
(n+1)2-1
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

Wn=

1
1•3
+
1
2•4
+
1
3•5
+…+
1
n(n+2)
=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
n-1
-
1
n+1
)+( 
1
n
-
1
n+2
)]

=

1
2
(1+
1
2
-
1
n+1
-
1
n+2
)=
3
4
-
2n+3
2n(n+1)

填空题
判断题