问题
解答题
数列{an}的前n项和为Sn,且满足a1=1,2Sn=(n+1)an, (I)求an与an-1的关系式,并求{an}的通项公式; (II)求和Wn=
|
答案
(I)由已知
两式相减得2an=(n+1)an-nan-1,移向整理得出an=2Sn=(n+1)an 2Sn-1=nan-1
an-1(n≥2)n n-1
∴
=an a1
•an an-1
•…•an-1 an-2
=a2 a1
•n n-1
•…•n-1 n-2
=n,2 1
∴an=n;且a1=1也适合,
所以an=n.
(II)
=1
-1a 2n+1
=1 (n+1)2-1
=1 n(n+2)
(1 2
-1 n
)1 n+2
Wn=
+1 1•3
+1 2•4
+…+1 3•5
=1 n(n+2)
[(1-1 2
)+(1 3
-1 2
)+(1 4
-1 3
)+…+(1 5
-1 n-1
)+( 1 n+1
-1 n
)]1 n+2
=
(1+1 2
-1 2
-1 n+1
)=1 n+2
-3 4
.2n+3 2n(n+1)