已知Sn为数列{an}的前n项和.Sn=n2 (1)求数列{an}的通项an; (2)设
|
(1)当n=1时,a1=S1=1,
当n>1时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
当n=1时,满足上式.
即数列{an}的通项公式an=2n-1.
(2)因为数列{
}是首项为1,公比为3的等比数列,所以bn an
=1×3n-1,bn an
即bn=an×3n-1=(2n-1)3n-1.
Tn=b1+b2+…+bn=1×1+3×3+…+(2n-1)3n-1,①
3Tn=1×3+3×32+…+(2n-3)3n-1+(2n-1)3n.②
两式相减可得得:
-2Tn=1+2(3+32+…+3n-1)-(2n-1)3n=1+2×
-(2n-1)3n3-3n 1-3 =1+3n-3-(2n-1)3n=-2-(2n-2)3n,即Tn=1+(n-1)3n