问题
解答题
已知等差数列{an}的公差为2,其前n项和Sn=pn2+2n(n∈N*). (I)求p的值及an; (II)若bn=
|
答案
(I)(法一)∵{an}的等差数列∴Sn=na1+
d=na1+n(n-1) 2
×2=n2+(a1-1)nn(n-1) 2
又由已知Sn=pn2+2n,
∴p=1,a1-1=2,
∴a1=3,
∴an=a1(n-1)d=2n+1
∴p=1,an=2n+1;
(法二)由已知a1=S1=p+2,S2=4p+4,即a1+a2=4p+4,
∴a2=3p+2,
又此等差数列的公差为2,
∴a2-a1=2,
∴2p=2,
∴p=1,
∴a1=p+2=3,
∴an=a1+(n-1)d=2n+1,
∴p=1,an=2n+1;
(法三)由已知a1=S1=p+2,
∴当n≥2时,an=Sn-Sn-1=pn2+2n-[p(n-1)2+2(n-1)]=2pn-p+2
∴a2=3p+2,
由已知a2-a1=2,
∴2p=2,
∴p=1,
∴a1=p+2=3,
∴an=a1+(n-1)d=2n+1,
∴p=1,an=2n+1;
(II)由(I)知bn=
=2 (2n-1)(2n+1)
-1 2n-1 1 2n+1
∴Tn=b1+b2+b3+…+bn=(1-
)+(1 3
-1 3
)+ (1 5
-1 5
)+…+(1 7
-1 2n-1
)=1-1 2n+1
=1 2n+1 2n 2n+1
∵Tn>9 10
∴
>2n 2n+1
,解得n>9 10
又∵n∈N+9 2
∴n=5