问题
解答题
数列{an}满足a1=1,an+3=an+3,an+2≥an+2(n∈N*). (1)求a7,a5,a3,a6; (2)求数列{an}的通项公式an; (3)求证:
|
答案
(1)∵a1=1,an+3=an+3,
∴a4=4,a7=7
∵an+2≥an+2
∴a3≥3,a5≥a3+2,a7≥a5+2,
∴a5=5,a3=3,a6=a3+3=6
(2)∵an+3=an+3,an+2≥an+2(n∈N*)
∴an+3≤an+2+1(n∈N*)
∴an+1≤an+1,an+2≤an+1+1
∴an+1+an+2+an+3≤an+an+1+an+2+3,即an+3≤an+3
∴an+1=an+1,an+2=an+1+1,an+3=an+2+1
∴{an}为等差数列,公差d=1.
∴an=n
(3)证明:n=1时,
=1<2成立n>1时,1 a12
∵
=1 an2
<1 n2
=1 n(n-1)
-1 n-1
(n>1)1 n
∴
+1 a12
+1 a22
+…+1 a32 1 an2
<1+(1-
)+(1 2
-1 2
)+…+(1 3
-1 n-1
)=2-1 n
<21 n
∴
+1 a12
+1 a22
+…+1 a32
<21 an2