问题 解答题
数列{an}满足a1=1,an+3=an+3,an+2≥an+2(n∈N*).
(1)求a7,a5,a3,a6;        
(2)求数列{an}的通项公式an
(3)求证:
1
a12
+
1
a22
+
1
a32
+…+
1
an2
<2
答案

(1)∵a1=1,an+3=an+3,

∴a4=4,a7=7

∵an+2≥an+2

∴a3≥3,a5≥a3+2,a7≥a5+2,

∴a5=5,a3=3,a6=a3+3=6

(2)∵an+3=an+3,an+2≥an+2(n∈N*

∴an+3≤an+2+1(n∈N*

∴an+1≤an+1,an+2≤an+1+1

∴an+1+an+2+an+3≤an+an+1+an+2+3,即an+3≤an+3

∴an+1=an+1,an+2=an+1+1,an+3=an+2+1

∴{an}为等差数列,公差d=1.

∴an=n

(3)证明:n=1时,

1
a12
=1<2成立n>1时,

1
an2
=
1
n2
1
n(n-1)
=
1
n-1
-
1
n
(n>1)

1
a12
+
1
a22
+
1
a32
+…+
1
an2

1+(1-

1
2
)+(
1
2
-
1
3
)+…+(
1
n-1
-
1
n
)=2-
1
n
<2

1
a12
+
1
a22
+
1
a32
+…+
1
an2
<2

单项选择题
问答题 简答题