已知等差数列{an}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是等比数列{bn}的第二项、第三项、第四项. (I)求数列{an}与{bn}的通项公式; (Ⅱ)设数列{cn}对任意正整数n均有
|
(1)由题意得(a1+d)(a1+13d)=(a1+4d)2,整理得2a1d=d2.
∵a1=1,解得d=2(d=0不合题意舍去),
∴an=2n-1
由b2=a2=3,b3=a5=9,
易求得bn=3n-1
(2)当n=1时,c1=6;
当n≥2时,
=(n+1)an+1-nan=4n+1,cn mn-1bn
∴cn=(4n+1)mn-1bn=(4n+1)(3m)n-1.
∴cn=6 n=1 (4n+1)(3m)n-1 n=2,3,4
当3m=1,即m=
时,1 3
Sn=6+9+13+…+(4n+1)
=6+(n-1)(9+4n+1) 2
=6+(n-1)(2n+5)=2n2+3n+1.
当3m≠1,即m≠
时,1 3
Sn=c1+c2++cn,即
Sn=6+9•(3m)+13•(3m)2++(4n-3)(3m)n-2+(4n+1)(3m)n-1.①
3mSn=6•3m+9•(3m)2+13•(3m)3++(4n-3)(3m)n-1+(4n+1)(3m)n.②
①-②得
(1-3m)Sn=6+3•3m+4•(3m)2+4•(3m)3++4•(3m)n-1-(4n+1)(3m)n
=6+9m+4[(3m)2+(3m)3++(3m)n-1]-(4n+1)(3m)n
=6+9m+
-(4n+1)(3m)n.4[(3m)2-(3m)n] 1-3m
∴Sn=
+6+9m-(4n+1)(3m)n 1-3m
.4[(3m)2-(3m)n] (1-3m)2
∴Sn=m= 1 3 m≠
.1 3