问题 解答题
已知{an}是等差数列,其前n项和为Sn,已知a3=11,S9=153,
(1)求数列{an}的通项公式;
(2)设bn=2an,证明:{bn}是等比数列,并求其前n项和An
(3)设cn=
1
anan+1
,求其前n项和Bn
答案

(1)∵{an}是等差数列,a3=11,S9=153,

∴9a5=153,

∴a5=17,

∴其公差d=

a5-a3
5-3
=3,

∴an=a5+(n-5)×d=17+(n-5)×3=3n+2;

(2)∵bn=2an,an=3n+2,

bn+1
bn
=2an+1-an=2d=23=8,且b1=25=32,

∴{bn}是以32为首项,8为公比的等比数列,

∴其前n项和An=

32
7
(8n-1);

(3)∵an=3n+2,

1
anan+1
=
1
(3n+2)(3n+5)
=
1
3
1
3n+2
-
1
3n+5
),

∴Bn=

1
3
[(
1
5
-
1
8
)+(
1
8
-
1
11
)+…+(
1
3n+2
-
1
3n+5
)]

=

1
3
1
5
-
1
3n+5

=

n
15n+25

选择题
单项选择题 案例分析题