问题
解答题
已知{an}是等差数列,其前n项和为Sn,已知a3=11,S9=153, (1)求数列{an}的通项公式; (2)设bn=2an,证明:{bn}是等比数列,并求其前n项和An. (3)设cn=
|
答案
(1)∵{an}是等差数列,a3=11,S9=153,
∴9a5=153,
∴a5=17,
∴其公差d=
=3,a5-a3 5-3
∴an=a5+(n-5)×d=17+(n-5)×3=3n+2;
(2)∵bn=2an,an=3n+2,
∴
=2an+1-an=2d=23=8,且b1=25=32,bn+1 bn
∴{bn}是以32为首项,8为公比的等比数列,
∴其前n项和An=
(8n-1);32 7
(3)∵an=3n+2,
∴
=1 anan+1
=1 (3n+2)(3n+5)
(1 3
-1 3n+2
),1 3n+5
∴Bn=
[(1 3
-1 5
)+(1 8
-1 8
)+…+(1 11
-1 3n+2
)]1 3n+5
=
(1 3
-1 5
)1 3n+5
=
.n 15n+25