问题 选择题
椭圆C 1
x2
a2
+
y2
b2
=1(a>b>0)
的左准线为l,左右焦点分别为F1,F2,抛物线C2的准线为l,焦点为F2,曲线C1,C2的一个交点为P,则
|F1F2|
|PF1|
-
|PF1|
|PF2|
等于(  )
A.-1B.1C.-
1
2
D.
1
2
答案

设PK垂直于准线 l,K为垂足,由题意和椭圆的定义可得  

|F1F2|
|PF1|
-
|PF1|
|PF2|
=
2c
2a - |PF2|
-
|PF1|
|PK|
 

=

2c
2a - |PF2|
-e=
2c- 
c
a
(2a-|PF2|)
2a - |PF2|
=
c
a
|PF2|
2a - |PF2|
=
c
a
|PK |
2a - |PK |
=
c
a
PK
|PF1|
 

=

c
a
a
c
=1,

故选  B.

单项选择题
单项选择题