问题 解答题
已知双曲线C的离心率为
2
,且过点(4,-
10

(1)求双曲线C的标准方程;
(2)若点M(3,m)在双曲线C上,求证:MF1⊥MF2
(3)求△F1MF2的面积.
答案

(1)∵双曲线C的离心率为

2

∴双曲线为等轴双曲线

∴设双曲线C的方程为nx2-ny2=1

∵双曲线C过点(4,-

10

∴16n-10n=1∴n=

1
6

x2
6
-
y2
6
=1即为所求.

(2)∵点M(3,m)在双曲线C上

∴m=±

3

由双曲线的对称性知,我们只需证明点M(3,

3
) 满足MF1⊥MF2即可

MF1
=(2
3
-3,-
3
),

MF2
=(-2
3
-3,-
3

MF1
• 
MF2
=(2
3
-3)(-2
3
-3)+(-
3
)(-
3
)=0,

∴MF1⊥MF2

(3)S△F1MF2=

1
2
|
MF1
||
MF2
|

=

1
2
(2
3
-3)
2
+(-
3
)
2
(-2
3
-3)
2
+(-
3
)
2

=

1
2
(24-12
3
)(24+12
3
)

=6.

改错题
短文改错。此题要求改正所给短文中的错误。对标有题号的每一行作出判断:如无错误,在
该行右边横线上画一个勾(√);如有错误(每行只有一个错误),则按下列情况改正:
此行多一个词:把多余的词用斜线(\)划掉,在该行右边横线上写出该词,并也用斜线划掉。
此行缺一个词:在缺词处加一个漏字符号(∧),在该行右边横线上写出该加的词。
此行错一个词:在错的词下划一横线,在该行右边横线上写出改正后的词。
注意:原行没有错的不要改。
     It was a chance of a lifetime to win a first          
prize on the Story Writing Show. All I had to do        
was to write a story or present it. My teachers         
have been telling me how great my writing was.          
So if they had said was true, I would have a chance     
of winning the prize. What were better, I had useful    
help. There was Uncle Chen, gentleman living            
near my house, who was a very much famous writer.       
He agreed to reading my story and give me some        
advices on how to write like a real writer.           
1._______      
2._______        
3._______    
4._______          
5._______        
6._______                     
7._______        
8._______        
9._______           
10._______