问题
解答题
在等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=
(1)求数列{an}通项an; (2)记 Tn=
|
答案
(1)等比数列{bn}的公比为q,结合题意可得
,解之得,q=3或q=-4(负值舍去),a2=6q+3+a2=12 q= 3+a2 q
∴{an}的公差d=a2-a1=3,可得an=3+(n-1)×3=3n.
(2)由(1),得到{an}的前n项和为Sn=
,n(3+3n) 2
∴
=1 Sn
=2 n(3+3n)
(2 3
-1 n
)1 n+1
由此可得:Tn=
+1 S1
+…+1 S2
=1 Sn
(1-2 3
+1 2
-1 2
+1 3
-1 3
+…+1 4
-1 n
)1 n+1
=
(1-2 3
)=1 n+1
.2n 3(n+1)
∴Tn-
=5 9
-2n 3(n+1)
=5 9 n-5 9(n+1)
令
<0,得n<5,故 n=1,2,3,4;令n-5 9(n+1)
=0,得n=5;令n-5 9(n+1)
>0,得n>5n-5 9(n+1)
∴当n=1,2,3,4时,Tn<
;当n=5时,Tn=5 9
;当 n>5(n∈N+)时,Tn>5 9
.5 9