设数列{an}与{bn}满足:对任意n∈N+,都有ban-2n=(b-1)Sn,bn=an-n•2n-1.其中Sn为数列{an}的前n项和.
(1)当b=2时,求{bn}的通项公式,进而求出{an}的通项公式;
(2)当b≠2时,求数列{an}的通项an以及前n项和Sn.
由题意知a1=2,且ban-2n=(b-1)Sn,ban+1-2n+1=(b-1)Sn+1.
两式相减得b(an+1-an)-2n=(b-1)an+1,
即an+1=ban+2n.①
(1)当b=2时,由①知an+1=2an+2n,
∴an+1-(n+1)•2n=2an+2n-(n+1)•2n=2(an-n•2n-1),
又a1-1×21-1=2-1=1≠0,
所以{an-n•2n-1}是首项为1,公比为2的等比数列.
可得,bn=2n-1,
由bn=an-n•2n-1,得an=(n+1)•2n-1.
(2)当b≠2时,由①得
an+1-
•2n+1=ban+2n-1 2-b
•2n+1=ban-1 2-b
•2n=b(an-b 2-b
•2n)1 2-b
若b=0,an=
,Sn=2n;2,n=1 2n-1,n≥2
若b=1,an=2n,Sn=2n+1-2;
若b≠0,1,数列{an-
•2n}是以1 2-b
为首项,以b为公比的等比数列,2(1-b) 2-b
故an-
•2n=1 2-b
•bn-1,2(1-b) 2-b
∴an=
[2n+(2-2b)bn-1],1 2-b
∴Sn=
(2+22+23+…+2n)+1 2-b
(1+b+b2+…+bn-1)2(1-b) 2-b
=
×1 2-b
+2(2n-1) 2-1
×2(1-b) 2-b bn-1 b-1
=2(2n-bn) 2-b
当b=1时,Sn=2n+1-2也符合上式.
所以,当b≠0时,Sn=
.2(2n-bn) 2-b