问题
选择题
双曲线C的左右焦点分别为F1,F2,且F2恰为抛物线y2=4x的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,则双曲线C的离心率为( )
|
答案
抛物线的焦点坐标(1,0),所以双曲线中,c=1,
因为双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,
由抛物线的定义可知,抛物线的准线方程过双曲线的左焦点,所以
=2c,b2 a
c2=a2+b2=1,解得a=
-1,双曲线的离心率e=2
=c a
=1+1
-12
.2
故选B.