问题 填空题
已知{an}是等差数列,且公差d≠0,又a1,a2,a4依次成等比数列,则
a1+a4+a10
a2+a4+a1
=______.
答案

由{an}是等差数列,所以,a2=a1+d,a4=a1+3d,

又a1,a2,a4依次成等比数列,所以,a22=a1a4

(a1+d)2=a1(a1+3d),所以,a1d=d2,因为d≠0,所以,a1=d.

a1+a4+a10
a2+a1+a4
=
3a1+12d
3a1+4d
=
15d
7d
=
15
7

故答案为

15
7

选择题
单项选择题