问题 解答题
已知函数f(x)=a+
2
3x-1
是奇函数,求
(1)常数a的值;
(2)f(log32)的值.
答案

(1)由函数的定义域:(-∞,0)∪(0,+∞),

f(x)=a+

2
3x-1
为奇函数,所以f(-x)=-f(x),即f(-x)+f(x)=0,

a+

2
3-x-1
+a+
2
3x-1
=0,即2a+
2(3x-1)
1-3x
=2a-2=0

解得a=1,

所以f(x)=1+

2
3x-1

(2)f(log32)=1+

2
3log32-1
=1+
2
2-1
=1+2=3.

问答题 简答题
单项选择题